Release Note

Release Date: July, 2019

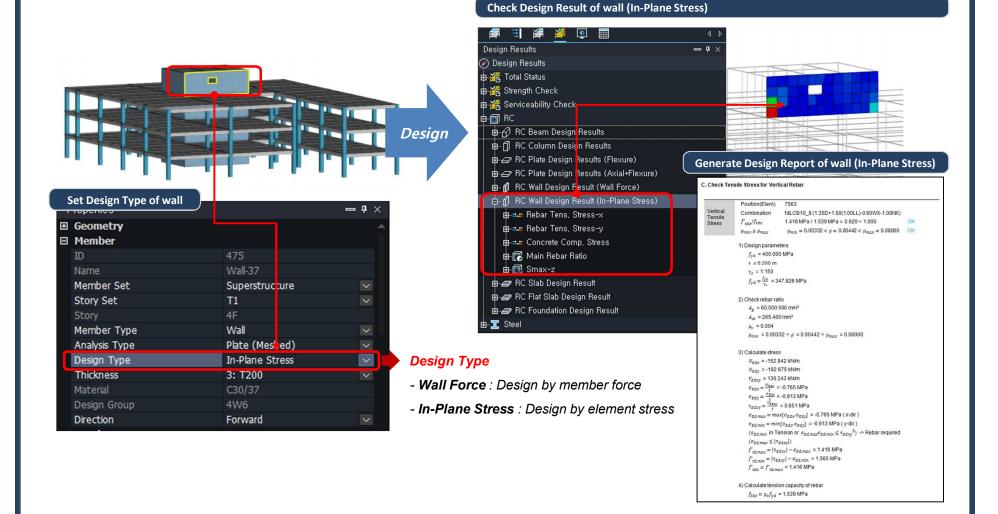
Product Ver.: nGen 2020 v1.1

Next Generation Software

for Integrated Analysis, Design, Drawing of Building Systems

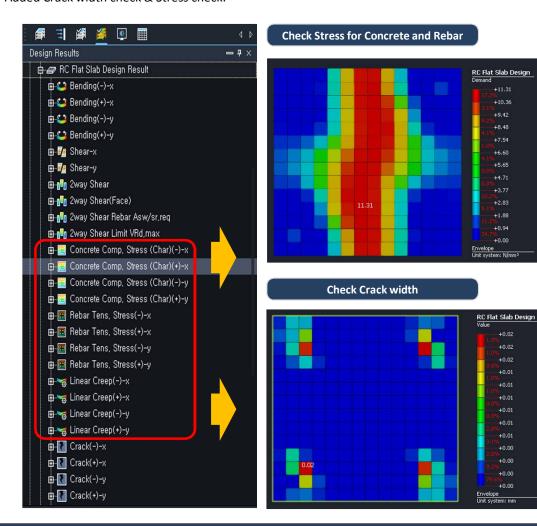
Contents

1. Improvement of Drawing Generation	
 Auto-generation of Rebar Arrangement for Longitudinal Section. 	 03
2. Improvement for RC Design	
 Addition of RC Design by elements in wall design (meshed plate) 	
 Addition of 2-way Shear results for Flat Slab and Foundation 	
Addition of Serviceability design for Slab and Foundation	
Slab and Foundation Design considering Wood-Armer moment	
Enhancement of RC design as per NTC 2018	 08
3. Improvement for Steel Design	
Addition of Steel Design as per AISC360-16	 09
4. Addition of nGen - GTS NX Interface	 10
5. Improvement for Auto-mesh	
Control a mesh size for specific elements	
Generation of Mesh according to 2D interference	 12
6. Improvement for Wind Load	10
Addition of Wind Load as per Poland national annex	 13
7. Improvement for Spring Support	
Addition of Distribute Spring Type in Area Spring	 14
8. Improvement of Stiffness scale factor	15
Improvement of Dialog box, Defining method and Target member type	 15
9. Improvement of Cracked Analysis	10
Addition of Cracked Analysis for 1D element	 10
10. Improvement of Boundary conditions	 17
Addition of Nonlinear Spring Properties	
11. Addition of Material DB: Metric material DB as per ASTM/ASTM09	 18
12. Improvement for Usability	16
Selection of member using member number	 19



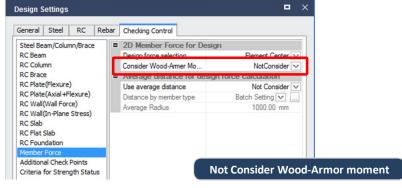
1. Improvement of Drawing Generation Auto-generation of Rebar Arrangement for Longitudinal Section. · Length and weight of reinforcement Midas Drawing > Drawing creation > Longitudinal section rebar arrangement... Supporting Scope 5287.50 • Rebar Detail of Longitudinal section - Beam and Column (Rebar Length & No.) - Non-Seismic detail as per EC2 Auto-Generation of Beam section line Continue Beam info. (T1-Roof) EL.4.00 RG3(50)-RG3(51)-RG1(29 Beam longitudinal Rebar Section-1 Beam longitudinal Rebar Section-2 (T1-Roof) EL.4.00 Beam longitudinal Rebar Section-3 (T1-Roof) EL.4.00 RG3(52)-RG3(53)-RG1(35 Beam longitudinal Rebar Section-4 (T1-Roof) EL.4.00 RG1(40) Beam longitudinal Rebar Section-5 (T1-Roof) EL 4.00 RB1(41) Beam longitudinal Rebar Section-6 (T1-Roof) EL.4.00 RG2(42) Beam longitudinal Rebar Section-7 (T1-Roof) EL.4.00 Beam longitudinal Rebar Section-8 Confirm cancel Setting of rebar arrangement Setting of rebar arrangement of co 100 • Setting Rebar Detail TT (1 - Development type and length - Splice type and length Beam longitudinal Rebar Section-1 Thick. Scale up Factor 5.00 Setting Rebar Detail **Rebar Arrangement for Longitudinal Section** • Stirrup or Hoop Detail for Cross Section Confirm cancel

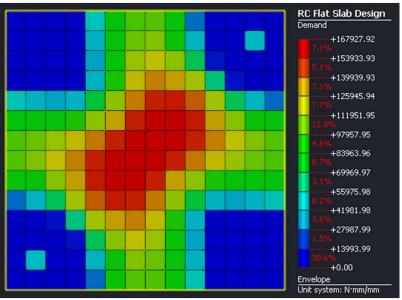
Addition of RC Design by elements in wall design (meshed plate)

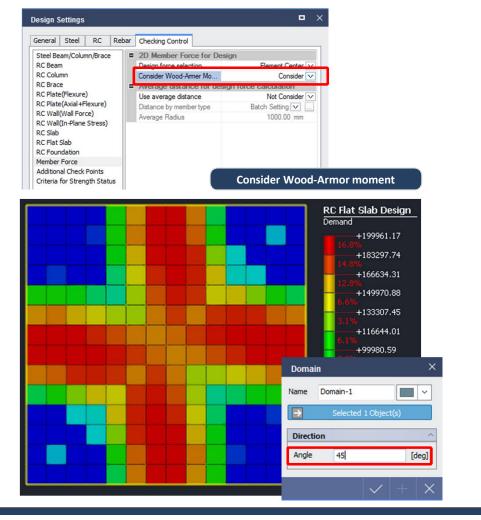

2. Improvement for RC Design Addition of 2-way Shear results for Flat Slab and Foundation • The following items are added in design results tree. 2-way shear result in column face - 2-way shear result in column face RC Flat Slab Design Ratio - Required Rebar Area (As,req) - 2-way shear limitation (V_{Rd}, max) 📑 🎒 🥞 👳 🚃 **-** ₽ × Design Results 🖨 🌃 Total Status Required rebar area (As,req) Status RC Flat Slab Design 由 🄏 Strength Check 由 🌃 Serviceability Check +58.78 由 ∂ RC Beam Design Results 由 🗓 RC Column Design Results +58.63 BC Plate Design Results (Flexure) +58.59 BC Plate Design Results (Axial+Flexure) 由 ⋒ RC Wall Design Result (Wall Force) ஞ்- 💋 RC Wall Design Result (In-Plane Stress) 🖶 🖅 RC Slab Design Result 2-way shear limitation (VRd,max) 🖨 🖅 RC Flat Slab Design Result ⊕ 🐸 Bending(-)-x RC Flat Slab Design ⊕ 🐸 Bending(+)-x ⊕ 😂 Bending(-)-y +1294.82 +1186.92 由 ≅ Bending(+)-y +1079.02 ⊕ Mar-x 由- 🬠 Shear-y 2way Shear +755.31 🟚 📭 2way Shear(Face) 🧧 □ 🖟 🗓 2way Shear Rebar Asw/sr,req As, req +431.61 🖶 որկը 2way Shear Limit VRd,max +215.80 +107.90

Addition of Serviceability design for Slab and Foundation

· Added Crack width check & Stress check.





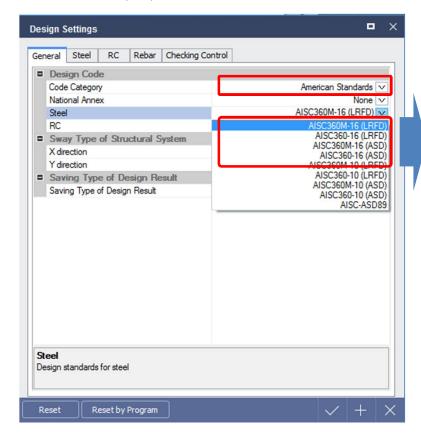


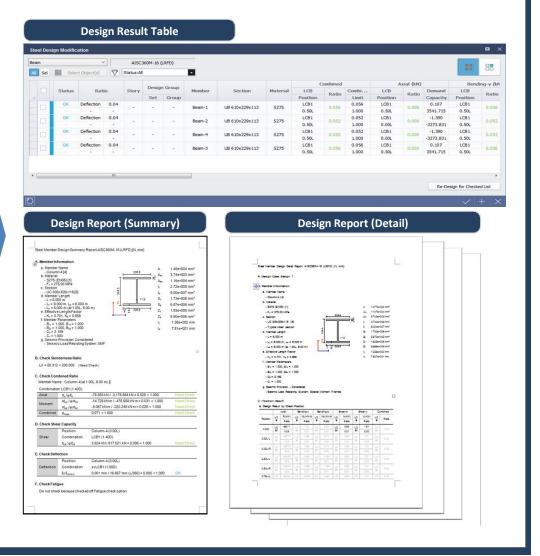
Slab and Foundation Design considering Wood-Armer moment

• Ultimate Limit State & Serviceability Limit State

Enhancement of RC design as per NTC 2018

No	Design Item	Description
1	Addition of seismic load	Static Seismic Load, Response Spectrum
2	Improvement of shear design	User's control for strut angle in column and beam shear design
3	Improvement of stress check	Added serviceability stress checks for 'Quasi Permanent' load combination
4	Improvement of punching check	Added punching check as per 6.4.5 and 6.4.5 of UNI EN1992-1-1
5	Improvement of foundation design	• Changed Min. rebar ratio for foundation (0.2% → 0.1% (NTC 2018 7.2.5))
6	Improvement of wall design	In Wall Design, it is not supported to apply ±50%N for design of wall (NTC 2018 7.4.4.5.1)
7		Changed Min. Rebar Ratio for Wall Element and Plate Type Wall (ASWD) (As/Ac = 0.002 (Vertical & Horizontal (NTC 2018 7.4.6.2.4))
8	Improvement of seismic design	Updated a formula for Ductility check (NTC 2018 7.4.4.1.2)

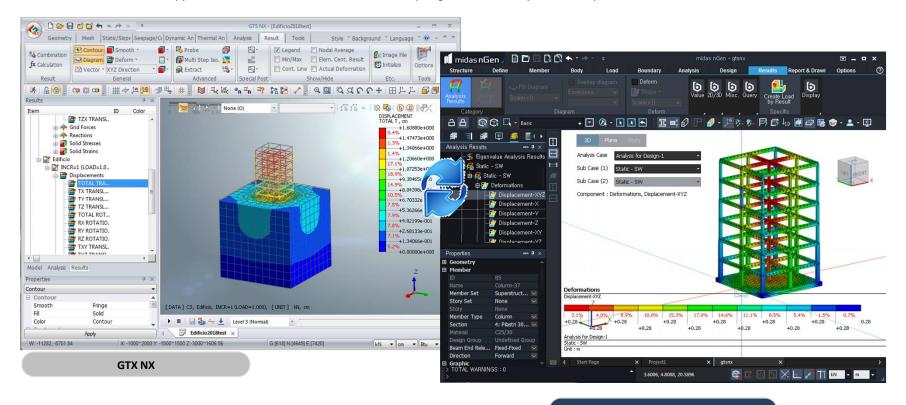




3. Improvement for Steel Design

Addition of Steel Design as per AISC360-16

- AISC360-16 (LRFD)
- AISC360M-16 (LRFD)
- AISC360-16 (ASD)
- AISC360M-16 (ASD)


4. nGen - GTS NX Interface

nGen > import > midas GTS Nodal Results file : Import a nodal result such as forces and spring properties for GTS NX

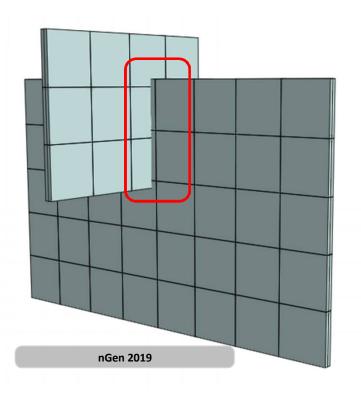
nGen > export > midas GTS MXT file : Export a model information to GTS NX

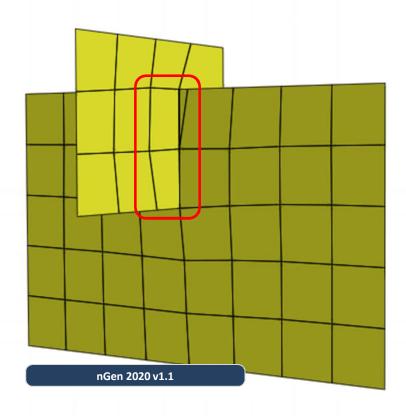
nGen > export > midas GTS Nodal Results : Export a reaction data of each nodes to GTS NX

Gen-GTS NX interface supports that the nodal results and nonlinear spring data can be imported or exported in Gen

nGen 2020 v1.1

5. Improvement for Auto-mesh Control a mesh size for specific elements Analysis > Analysis Parameter > Mesh Size Control Define Structure Member **Body** Load Boundary **Analysis** Design Results **Report & Drawing Options** 🖊 Modal Linear Buckling Analysis Settings Combination Error 📆 Crane Analysis Parameters Load Combination Mesh Size Control for 2D element Mesh Size Control for 3D element Surface Ctrl-2 0.1 m ✓ Mid Nodes On Geometry ✓ Try Mapped Mesh





5. Improvement for Auto-mesh

Generation of Mesh according to 2D interference

• Improvement of automatic mesh shape generation according to the intersection of 2D-2D

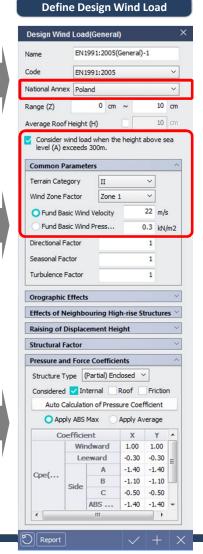
6. Improvement for Wind Load

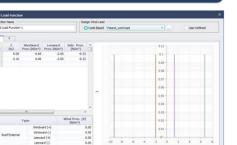
Addition of Wind Load as per Poland national annex

Tab NA.1 - Basic values of the base wind speed and wind speed pressure in zones

Zone	Vao (m/s)	(m/s)	q _{0,0} (kN/m ²)	<i>q</i> _{0,0} (kN/m²)
	A ≤ 300 m	A > 300 m	A ≤ 300 m	A > 300 m
1	22	22·[1 + 0,0006 (A - 300)]	0,30	$0,30 \cdot [1 + 0,0006(A - 300)]^2$
2	26	26	0,42	0,42
3	22	22·[1 + 0,0006 (A - 300)]	0,30	20000 - A 0,30 · [1 + 0,0006(A - 300)]2 ·

Tab NΔ.2 - Values of the directional coefficient

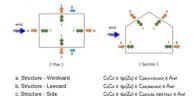

Zone	Wind direction (sector)											
	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
	1	2	3	4	5	6	7	8	9	10	11	12
1	0,8			(,7			0,8	0,9	1	,0	0,9
2	1,0	0,9	0,8		0,7		8,0	0,9	1,0			
3	0,8		0	,7		0,9			1	,0		


NA.6 Provisions regarding 4.3.2 (1)

The coefficient of roughness can be calculated from the formulas given in the Table NA.3.

Tab NA.3 – Coefficient of roughness and exposure coefficient and z_{min} and z_{max}

Terrain category	C _f (Z)	Ce(Z)	Z _{min} , m	Z _{max} , m
0	$1.3 \cdot \left(\frac{z}{10}\right)^{0.11}$	$3.0 \cdot \left(\frac{z}{10}\right)^{0.17}$	1	200
ī	$1.2 \cdot \left(\frac{z}{10}\right)^{0.13}$	$2.8 \cdot \left(\frac{z}{10}\right)^{0.19}$	1	200
Ш	$1.0 \cdot \left(\frac{z}{10}\right)^{0.17}$	$2,3 \cdot \left(\frac{z}{10}\right)^{0,24}$	2	300
ш	$0.8 \cdot \left(\frac{z}{10}\right)^{0.19}$	$1.9 \cdot \left(\frac{z}{10}\right)^{0.26}$	5	400
IV	$0.6 \cdot \left(\frac{z}{10}\right)^{0.24}$	$1.5 \cdot \left(\frac{z}{10}\right)^{0.29}$	10	500



Wind Load Function

Generation of Wind Load Report

9. Equation for Wind Load			
Wind Force	$:F_{w}=P_{f}\cdot A_{ref}$		
Pressure	$: P_f = C_a C_d C_f q_p$		
Exposure Factor	$C_g = 2.3 \cdot (z/10)^{0.24}$		
Peak Velocity Pressure	$: q_p = C_q(Z) \cdot q_b$		
Basic Velocity Pressure	$: q_b = 1/2 \cdot \rho \cdot V_b^2$		
Mean Wind Velocity	$: V_m = C_r \cdot C_0 \cdot V_b$		
Basic Wind Velocity	$: V_b = C_{dir} \cdot C_{season} \cdot V_{b,0}$		
Roughness Factor	$: C_r = 1.0 \cdot (z/10)^{0.17}$		

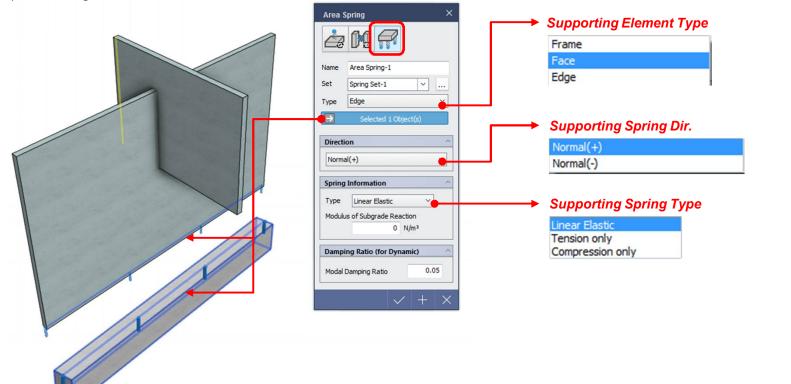
10. Design Wind Pressure

d. Internal

a. Structure - Windward

Level	Wind Pressure a Direction			Wind Pressure a+90 Direction			
(m)	Pr(kgf/m²)		Distribution	Pr(kgf/m²)	Distribution		
-	2		0.12 ¬		0.12 ¬		
-	-			-			
-	*		0.1	-	0.1		
9	= 1			-			
51			0.08 -	-	0.08		
8	8	Ħ		-	Ħ		
-	-	Height	0.06 -	-	- 90.0 Fei		
-	2	I		17	-		
-	-		0.04 -		0.04		

qo(Zi) x Cpi x Aref

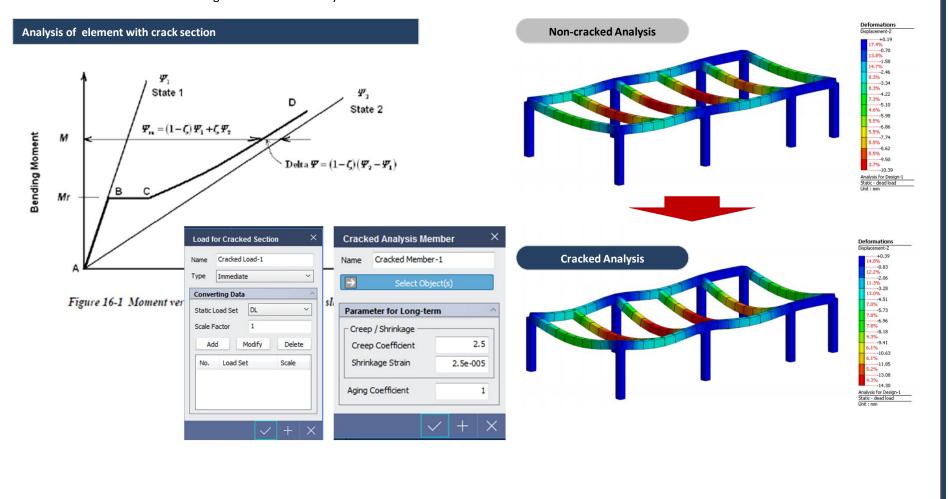

7. Improvement for Spring Support

Addition of Distribute Spring Type in Area Spring

Boundary > Spring > Area

• Spring input for 2D Edge, 2D Face, and 1D Fame member.

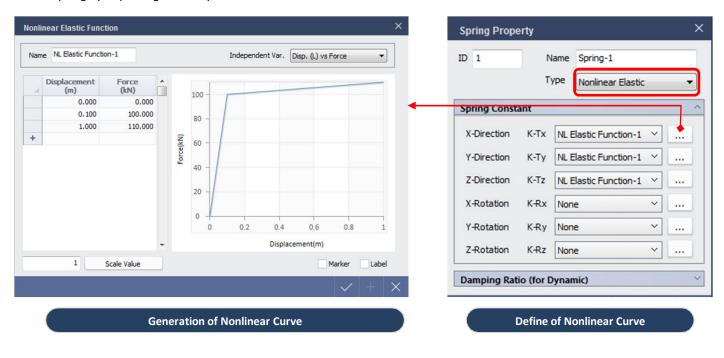
8. Improvement of Stiffness scale factor Improvement of Dialog box, Defining method and Target member type Analysis > Analysis Parameters > Stiffness Scale Factor Define Structure Member Body Load **Boundary** Analysis Design Results **Report & Drawing Options** Modal Linear Buckling Analysis Settings Cracked Section • Combination Error 😾 Crane Error Report Load Combination Analysis Parameters Settings Position of "Stiffness Scale Factor" menu is changed to analysis tap Body Structure Boundary Analysis Story Set nGen 2019 ↓ Load Set • 1D Section **≨** Spring → ■ 2D Thickness @ Member Set 🎳 Mass Set **⊸**Link 육 3D Solid II: Stiffness Reduction • II Boundary Set • Material Reference Integrated a separated menu by member type into one dialog box **Stiffness Scale Factor** Added to define all 2D members except wall(Membrane type) member Set Select Object(s) Scale Factor Assignment by member □ In-plane Stiffness Scale Factor Axial_x Axial_y 1



9. Improvement of Cracked Analysis

Addition of Cracked Analysis for 1D element

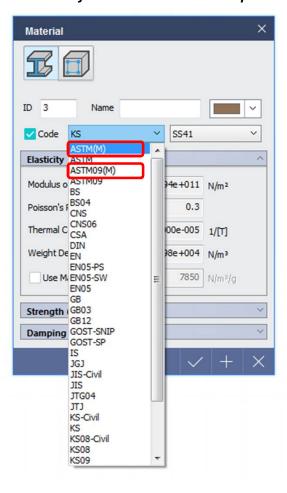
Deflection Calculation considering stiffness reduction by crack

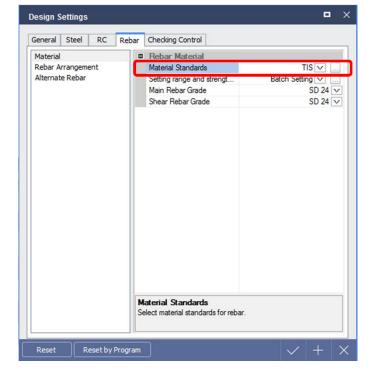

10. Improvement of Boundary conditions

Addition of Nonlinear Spring Properties

nGen > Member > Flat/Plate Structure > Drop Panel

- Analysis results reflecting the nonlinear characteristics of soil
- Definition of Pile spring by importing the analysis result of GTS NX





11. Addition of Material DB

Addition of Metric material DB as per ASTM / ASTM09

Addition of rebar DB for Thailand

12. Improvement for Usability Selection of member using member number Results > Query > Node / Element Report & Drawing Define Member Body Load Boundary Design Structure Analysis Results Options Node/Element Deform ✓ Legend Contour + CDF Sum Tag 🚝 No Results 🕶 On-Curve Query Node / Element / Member Member Element Node Wall 810 Find • 5 Wall-810

